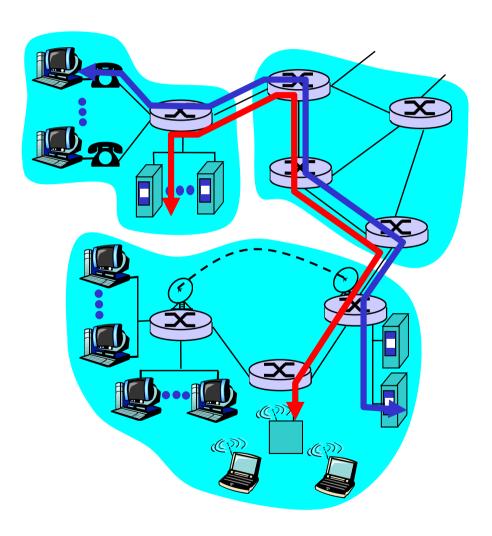

Lezione 12: Livello Rete

Richiamo di concetti utili: Network Core

- Maglia di router interconnesi
- Problema fondamentale: come vengono trasferiti i dati attraverso la rete?
 - commutazione di circuito: un circuito dedicato per ogni chiamata: rete telefonica
 - commutazione di pacchetto:

 i dati sono inviati attraverso
 la rete in "pezzi" discreti



Network Core: Commutazione di Circuito

Risorse riservate end-to-end per ogni "chiamata"

- ampiezza di banda del link e capacità di commutazione note
- è richiesta una call setup
- le risorse sono dedicate: nessuna condivisione
- performance garantita

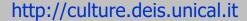
Network Core: Commutazione di Circuito

- Risorse di rete (ad es., banda) divisa in "parti"
- risorse allocate per le chiamate
- □ risorse *idle* se non usate dalla chiamata proprietaria (no sharing)

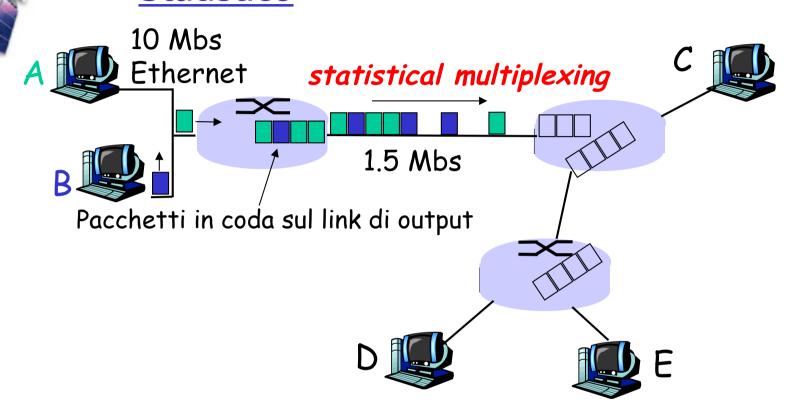
- La banda può essere divisa in parti, basate su
 - Divisione frequenziale
 - Divisione temporale

tempo

Network Core: Commutazione di Pacchetto


Ogni flusso di dati end-to-end è diviso in pacchetti

- Ogni pacchetto contiene un indirizzo al quale esso va inoltrato
- □ I pacchetti di due utenti condividono le risorse di rete
- Ogni pacchetto usa tutta l'ampiezza di banda quando viene trasmesso
- Risorse usate quando se ne necessita

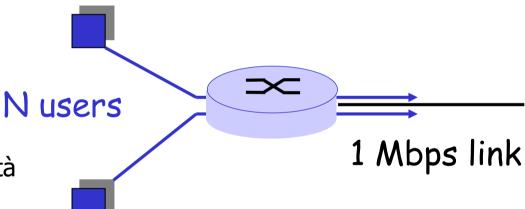

Divisione in parti della banda Allocazione dedicata Riserva delle risorse

Contesa sulle risorse:

- La domanda aggregata di risorse può eccedere il totale di risorse disponibili
- congestione: i pacchetti vengono bufferizzati e messi in coda
- store and forward: i pacchetti si muovono di un passo alla volta
 - trasmessi sul link
 - aspettano il proprio turno al successivo link

Commutazione di Pacchetto: Multiplexing
Statistico

Sequenza di pacchetti di A e B che non hanno uno schema fissato **→** *multiplexing statistico*.


Nel TDM ogni host utilizza sempre lo stesso slot temporale.

Commutazione di Pacchetto vs Commutazione di Circuito

La commutazione di pacchetto dà la possibilità alla rete di gestire un numero maggiore di utenti!

- □ 1 Mbit link
- ogni utente:
 - 100 kbps quando è "attivo"
 - Attivo il 10% del tempo
- circuit-switching:
 - 10 utenti
- packet switching:
 - Con 35 utenti la probabilità che + di 10 siano attivi contemporanemente è di 0.0004

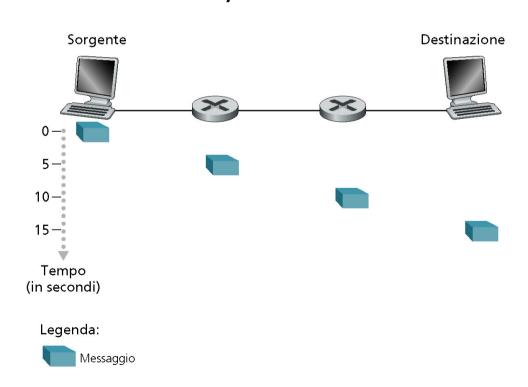
Probabilità che 11 utenti siano attivi è:

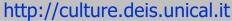
$$\binom{11}{35}0.1^{11} (1-0.1)^{24} = \frac{35!}{11!24!} 10^{-11} 0.9^{24} = 3.33 \times 10^{-4}$$

Commutazione di Pacchetto vs Commutazione di Circuito

Commutazione di pacchetto:

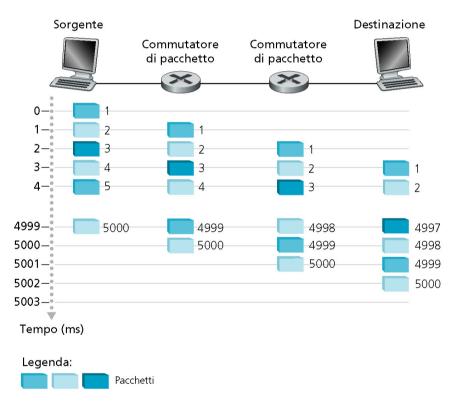
- Ottimo per dati a burst
 - o condivisione risorse
 - o più semplice, non necessita di call setup
- □ Eccessiva congestione: ritardo e perdita di pacchetti
 - I protocolli necessitano di trasferimenti dati affidabili e di controllo della congestione
- D: Come si fa a fornire un comportamento circuit-like?
 - Banda garantita per applicazioni audio/video
 - Problema non ancora completamente risolto




<u>Commutazione di Pacchetto: store-</u> and-forward

- Necessita di L/R secondi per trasmettere un pacchetto di L bits su un link di R bps
- Un intero pacchetto deve arrivare al router prima che esso possa essere trasmesso sul link successivo: store and forward
- ☐ ritardo = 3L/R

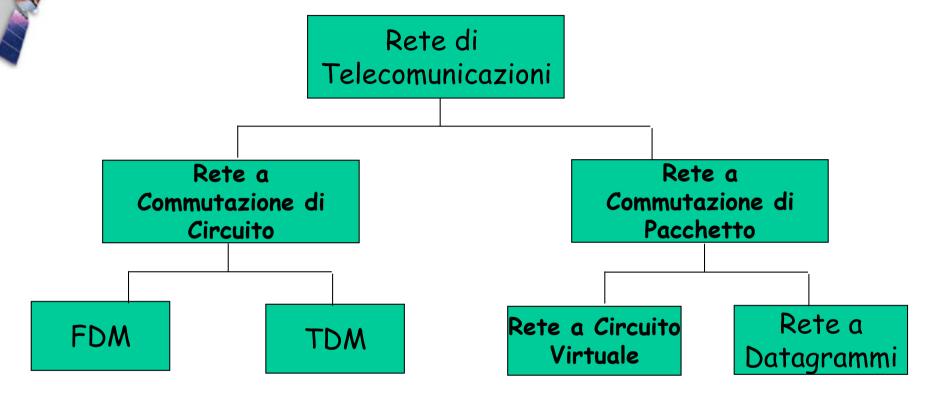
Esempio:


- \Box L = 7.5 Mbits
- \square R = 1.5 Mbps
- □ delay = 15 sec

Commutazione di Pacchetto: Segmentazione del messaggio

Suddiviamo ora il messaggio precedente in 5000 pacchetti

- Ogni pacchetto avrà dimensione di 1500 bits
- 1 ms per trasmettere un pacchetto su un link
- pipelining: ogni link lavora in parallelo con gli altri
- Ritardo si riduce da 15 s a 5.002 s

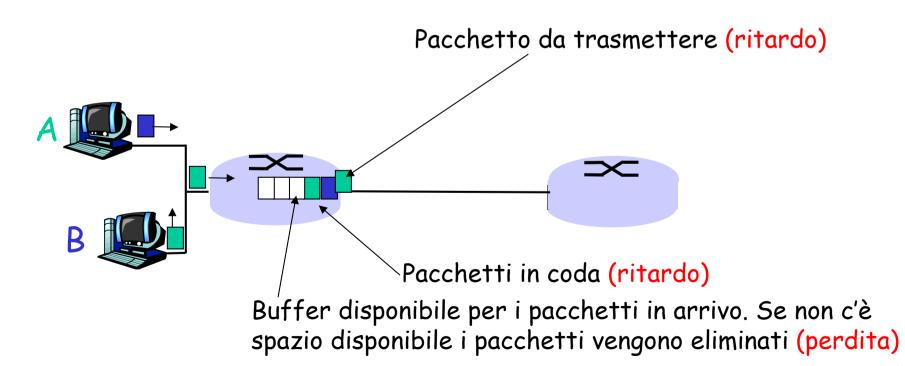

Reti a commutazione di pacchetto: forwarding

- <u>Obiettivo:</u> spostare i pacchetti da sorgente a destinazione tramite i router
- Rete a datagrammi:
 - destination address nel pacchetto determina il prossimo passo
 - Percorsi possono cambiare da sessione a sessione
 - analogia: guidando chiedere la direzione

Rete a circuito virtuale:

- Ogni pacchetto contiene un tag (virtual circuit ID), il tag determina il prossimo passo
- Percorsi fissati al momento della call setup per tutta la durata della chiamata
- router conservano informazioni sullo stato per-call

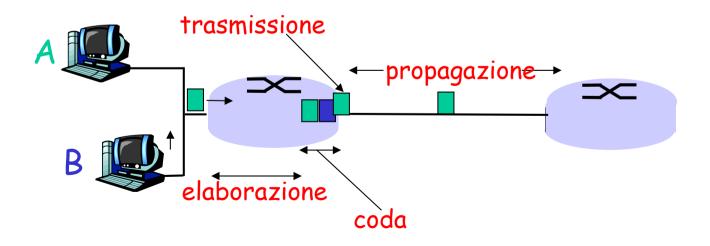
Classificazione della rete


- Una rete a datagrammi non è nè orientata alla connessione nè senza-connessione.
- Essa può fornire alle sue applicazioni sia servizi orientati alla connessione (come il TCP in Internet) sia senza connessione (come UDP in Internet).

<u>Perchè si incorre in ritardi e perdite</u> <u>nelle reti a commutazione di pacchetto?</u>

I pacchetti vengono messi in coda nei buffer dei router

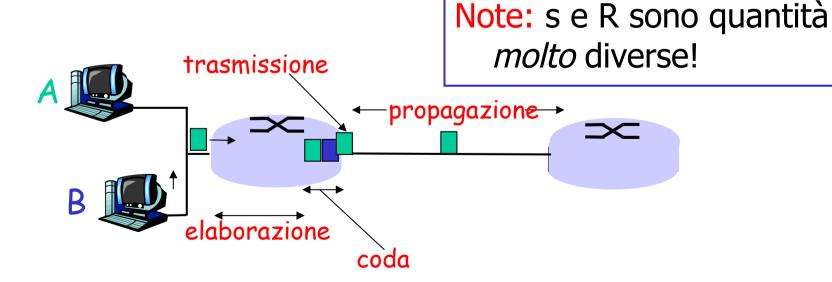
 Se il rate di arrivo dei pacchetti eccede la capacità di output del link > I pacchetti si accodano in attesa di essere spediti



Quattro cause per i ritardi

- 1. Ritardo di elaborazione
 - Controllo di errore sui bit
 - Determinazione link di output

- 2. Ritardo di coda
 - Attesa sul link di output per la coda presente
 - Dipendente dal livello di congestionamento del router


Quattro cause per i ritardi

3. Ritardo di Trasmissione:

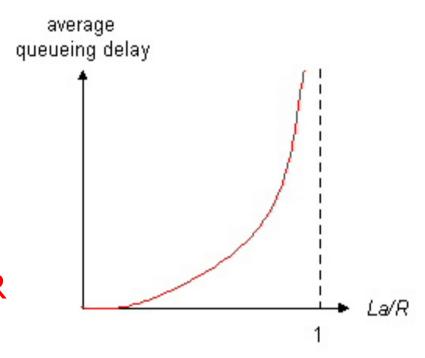
- R=velocità di trasmissione del link (bps)
- L=lunghezza del pacchetto (bits)
- Tempo necessario per spedire un pacchetto = L/R

4. Ritardo di propagazione:

- d=lunghezza del link fisico
- s=velocità di propagazione nel mezzo (~2x10⁸ m/s)
- Ritardo di propagazione delay = d/s

Ritardo di nodo

$$d_{\text{nodo}} = d_{\text{elab}} + d_{\text{coda}} + d_{\text{tras}} + d_{\text{prop}}$$


- □ d_{elab} = ritardo di processamento
 - o tipicamente pochi microsecondi o meno
- □ d_{coda} = ritardo di coda
 - o dipende dalla congestione e dalla velocità di link
- \Box d_{tras} = ritardo di trasmissione
 - = L/R, significativo per link lenti
- \Box d_{prop} = ritardo di propagazione
 - o da pochi microsecondi a centinaia di millisecondi

Ritardo di coda (rivisto)

- R=velocità del link (bps)
- L=lunghezza del pacchetto (bits)
- a=rate medio di arrivo dei pacchetti

intensità del traffico = La/R

- □ La/R ~ 0: attesa media in coda piccola
- □ La/R -> 1: ritardi più elevati
- □ La/R > 1: troppo traffico in arrivo, attesa media infinita!

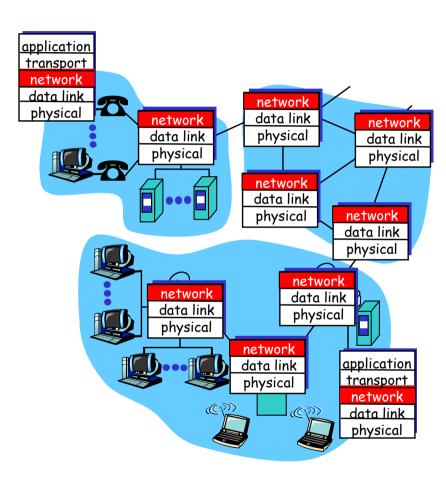
Perdita dei pacchetti

- I buffer che precedono i link hanno capacità finita
- Quando un pacchetto arriva su una coda piena, esso viene scartato (cioè perso)
- □ I pacchetti persi possono essere ritrasmessi dal nodo precedente, dalla sorgente del sistema, o non sono ritrasmessi proprio

Network Layer

Strato di Rete (Network Layer)

- Servizi del livello di rete
- Protocolli di routing Internet
 - o intra-domain
 - inter-domain
 - multicast routing
- Routing gerarchico
- □ IP


Strato di Rete (Network layer)

Obiettivo: trasportare pacchetti da mittente a destinatario

tre funzioni importanti:

- determinazione del cammino trovare il percorso (route)

 Routing algorithms
- switching: indirizzare i pacchetti all'interno dei router
- call setup: talvolta si richiede una call set up prima di mandare i dati

Network service model

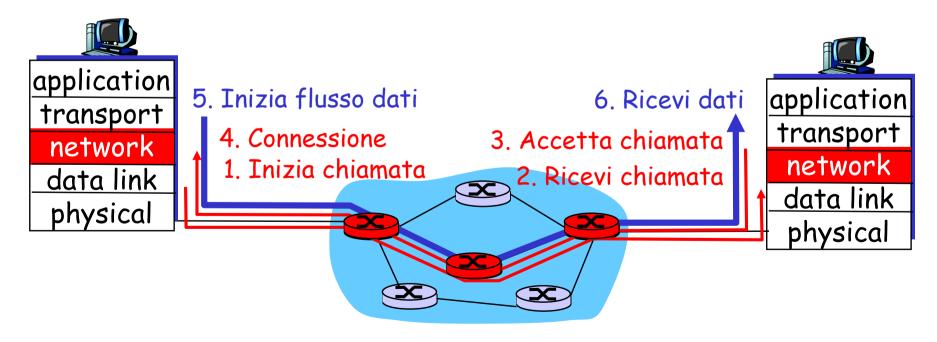
Che tipo di servizio e' offerto?

- banda garantita?
- separazione dei pacchetti (sincronizzazione interpacchetto o no jitter)?
- consegna garantita (lossfree)?
- consegna nell'ordine (inorder)?
- verifica congestione e notifica al mittente (congestion feedback)?

Modalita' di realizzazione:

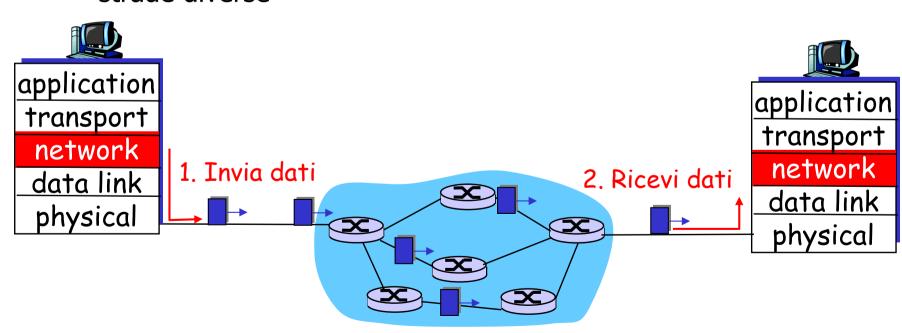
circuiti virtuali o datagrammi?

Circuito Virtuale


"cammino da sorgente a destinazione (come circuito telefonico)"

- o con eventuale garanzia di prestazione
- o operazioni di rete lungo il cammino sorgente-destinazione
- apertura e chiusura di ogni chiamata prima di inviare dati
- ogni pacchetto trasporta un identificatore VC (che non è l'indirizzo della destinazione)
- ogni router mantiene informazioni su ogni singola connessione
- risorse (bandwidth, buffers) possono essere allocate in ogni link e/o router del cammino virtuale (ottenendo una granzia di banda)

<u>Circuiti Virtuali: protocollo di</u> <u>segnalazione</u>


- usato per setup e chiudere VC
- usato in ATM, frame-relay, X.25
- non usato oggi in Internet

Internet: reti a Datagramma

- no call setup a livello network
- routers: non c'e' connessione
- pacchetti indirizzati usando ID destinazione
 - pacchetti fra stessa sorgente-destinazione possono seguire strade diverse

Modelli di servizio dello strato di Rete:

Arc	hitettura di Rete	Modello di Servizio	Cosa garantisce?				Feedback per
			Banda	Perd	Ordine	Tempor.	Congestione
	Internet	best effort	non garant.	no	no	no	no (ricavata dalle perdite)
	ATM	CBR	costante	sì	sì	sì	no congestione
	ATM	VBR	garantita	sì	sì	sì	no congestione
	ATM	ABR	minimo garantito	no	sì	no	sì
	ATM	UBR	non garant.	no	sì	no	no

[☐] ci sono estensioni di Internet : Intserv, Diffserv

Datagrammi vs Circuiti Virtuali

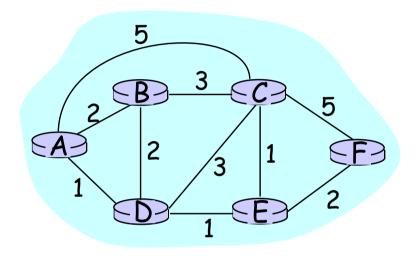
Internet

- scambi fra computer
 - servizio "elastico" no requisiti tempo stretti
- terminali intelligenti
 - possono modificare e fare controllo errori
 - o reti di connessione semplici
- reti eterogenee
 - con caratteristiche diverse
 - difficile garantire servizio omogeneo

ATM

- evoluzione da telefonia
- conversazione umana:
 - requisiti di tempo
 - servizio garantito
- terminali "stupidi"
 - o complessità nella rete

Problemi di Routing


Routing

Protocollo Routing

Obiettivo: trovare un "buon" cammino da sorgente a destinazione

Rete modellata come grafo:

- nodi sono routers
- archi link fisici
 - costo link: ritardo, costo trasmissione (€), congestione

"buon" cammino:

- di solito cammino costo minimo
- altre possibilita'

Classificazione algoritmi di Routing

Globale vs. decentralizzato

Globale: tutti i router hanno completa conoscenza rete (topologia, costi)

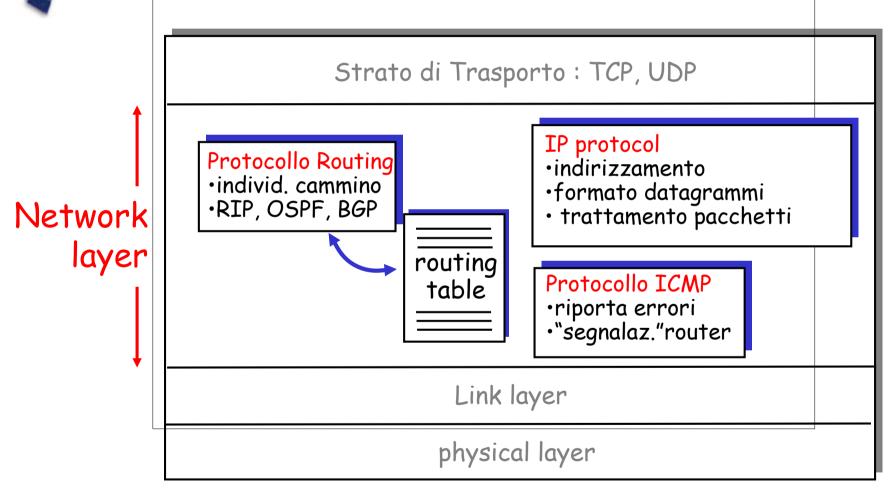
Decentralizzato: router conosce solo i vicini a cui è connesso

- routing è processo iterativo di scambio informazioni con i vicini
- algoritmi di "distance vector"

Statico vs. dinamico

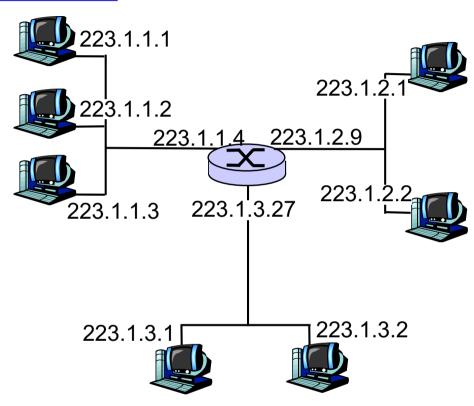
Statico:

routes cambiano lentamente nel tempo


Dinamico:

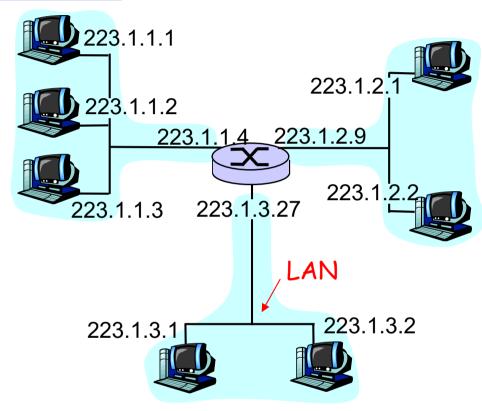
- routes cambiano in fretta
 - aggiornamenti periodici in risposta al cambio dei costi di collegamento

Lo strato di Rete di Internet


Funzioni del router a livello di rete:

Indirizzamento IP

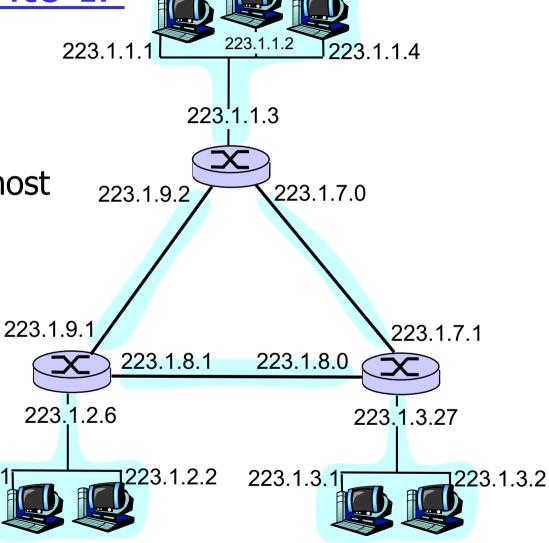
indirizzo IP: identificatore di 32-bit per host, e *interfaccia* router


- interfaccia: connessione tra host, router e link fisico
 - i router di solito hanno molte interfacce
 - host puo' avere piu' interfacce
 - indirizzo IP associato con interfaccia, non host, router

Indirizzamento IP

indirizzo IP:

- indirizzo rete (bit più significativi)
- indirizzo host (bit meno significativi)
- ☐ Cosa è una rete? (dal punto di vista indirizzo IP)
 - interfacce con stesso indirizzo di rete
 - si possono collegare fra loro senza intervento dei router

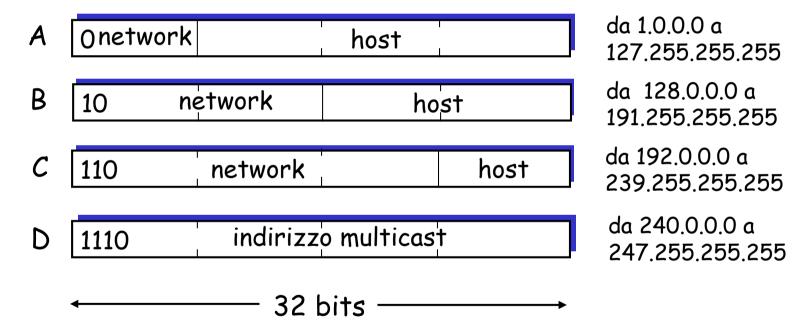

la rete consiste di 3 reti IP (per gli indirizzi IP che iniziano con 223, i primi 24 bit sono l'indirizzo di rete)

Indirizzamento IP

223.1.2.1

Come trovare la rete?

crea "isole" di reti staccando ogni interfaccia dal suo host



Sistema interconnesso consistente in 6 reti

Indirizzo IP

classe

Indirizzamento IP: CIDR

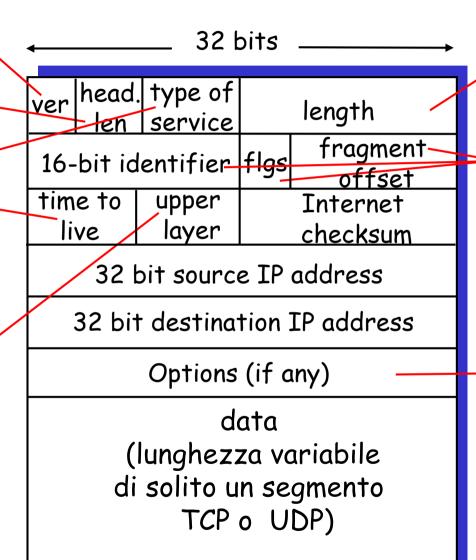
Indirizzamento per classe:

- uso inefficiente dello spazio di indirizzamento, esaurimento dello spazio degli indirizzi
- o ad es., reti di classe B allocano indirizzi sufficienti per 65000 hosts, anche se ce ne'erano solo 2000 nella rete

CIDR: Classless InterDomain Routing

- o porzione della rete con indirizzi di lunghezza arbitraria
- o formato degli indirizzi: a.b.c.d/x, dove x indica in # di bit più significativi nella quantità di 32 bit che costituisce la parte dell'indirizzo relativa alla rete

200.23.16.0/23


Formato datagramma IP

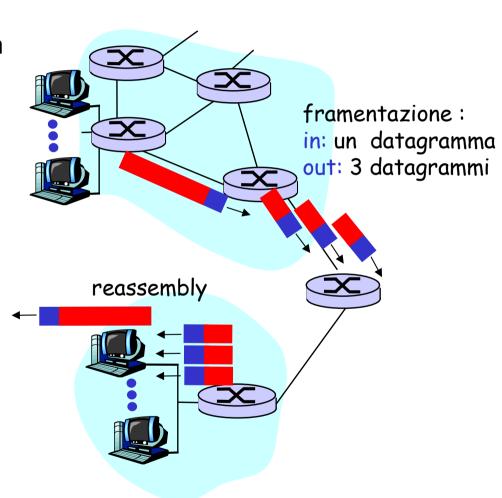
numero versione protocol lo IP

lunghezza header (bytes) "type" di dati-

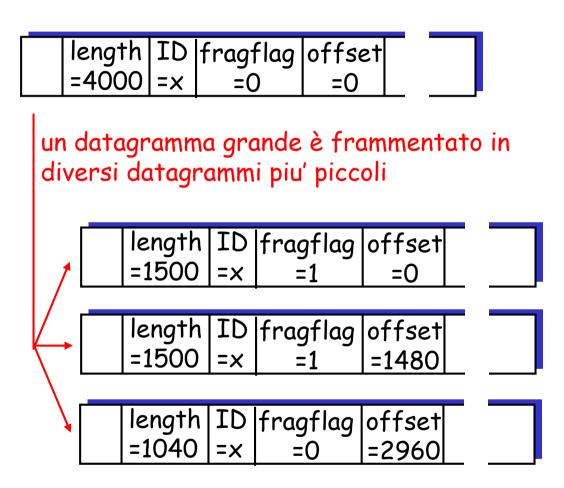
max number hop rimanenti (decrementato a ogni router)

protocollo strato super. a cui dare payload

lunghezza total datagramma (bytes


usato per frammentazione/ riassemblamento

P.es. timestamp, percorso seguito, specifica lista di routers da visitare


Frammentazione/ Riassemblamento

- link di rete hanno un limite sulla max dimensione del pacchetto trasferibile MTU.
 - diversi tipi di link, diverse MTU
- datagrammi IP grandi sono divisi ("frammentati") nella rete
 - un datagramma diviene diversi datagrammi
 - il "riassemblamento" è effettuato solo alla destinazione finale
 - intestazione IP è usata per identificare e ordinare frammenti correlati

Frammentazione/ Riassemblamento IP

IPv6

IPv6

- Motivazione iniziale: lo spazio di indirizzamento a 32-bit sarà completamente utilizzato entro il 2008.
- Motivazione aggiuntiva:
 - formato dell'header contribuisce nel processamento e nel forwarding del pacchetto
 - l'header può facilitare politiche di QoS
 - un nuovo indirizzo "anycast": instrada al "migliore" dei server replicati
- IPv6 formato del datagramma:
 - o header di lunghezza fissata a 40 byte
 - o non è concessa frammentazione

IPv6 Header (Cont)

Classe di traffico: identifica la priorità tra i datagrammi che fluiscono.

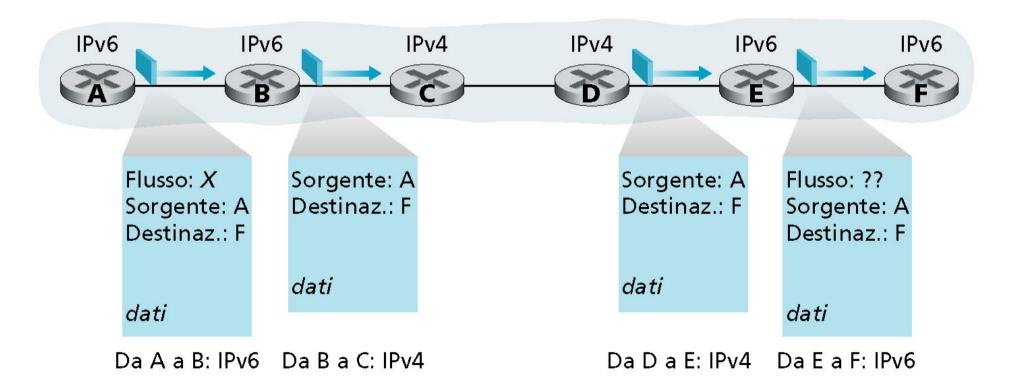
Etichetta di flusso: identifica i datagrammi nello stesso "flusso".

Intestazione successiva: identifica il livello protocollare superiore dei dati.

32 bit										
Versione	Classe di traffico	Etichetta di flusso								
Lunghezza campo dati			Intestazione successiva	Limite di hop						
Indirizzo sorgente (128 bit)										
Indirizzo di destinazione (128 bit)										
Dati										

Modifiche rispetto a IPv4

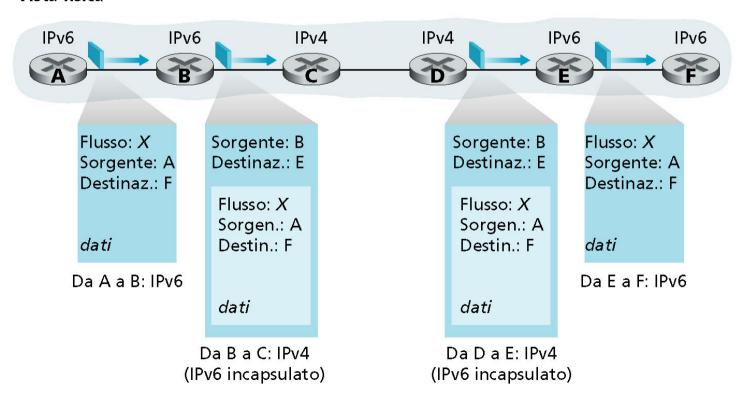
- Checksum: rimossa completamente per ridurre i tempi di processamento di ogni hop
- Options: consesse, ma al di fuori dell'header, indicate col campo "Intestazione successiva"
- □ *ICMPv6*: nuova versione di ICMP
 - tipi di messaggi addizionali, ad es. "Pacchetto Troppo Grande"
 - funzioni di gestione di gruppi multicast




Transizione da IPv4 a IPv6

- Non tutti i routers possono essere aggiornati contemporaneamente
 - o no "flag days"
 - O Come opererù una rete che ha router operanti con entrambi i protocolli?
- Due approcci possibili:
 - Dual Stack: alcuni router con stack duali (v6, v4) possono "tradurre" tra i due formati
 - Tunneling: IPv6 trasportato come payload in datagrammi IPv4 tra routers IPv4

Approccio Dual Stack



<u>Tunneling</u>

Vista logica

Vista fisica

