QOS E SICUREZZA NELLE RETI 30.05.2016 DES ALGORITHM (A TUTORIAL)

CRITTOGRAFIA DES

- DES Algorithm works on bit or binary number, this mean that if we have to face with an HEX number such as 1 it needs to be converted in a binary number:
 - 1 hex = 0001 (4 bits 1 nibble)
 - 9 hex = 1001
 - A hex = 1010
- DES works on 64 bits (64/4) = 16 hex numbers;
- DES uses a KEY with a length of 64 bits. The DES key (K) is composed of 2 components
 - 56 bits (used as effective key's values)
 - 8 bits (used for control the each 8-th bit of the word is given by the XOR (logic operator) of the previous 7 bits of the word). Example
 - 1100111 1 Therefore, the whole word shall be 11001111

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	(MULL)	32	20	(SPACE)	64	40	0	96	60	E.
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	•	66	42	В	98	62	b
3	3	JEND OF TEXT)	35	23	*	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	6	70	46	F	102	66	f
7	7	(BELL)	39	27	1	71	47	G	103	67	9
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	(HOR/ZONTAL TAB)	41	29)	73	49	1	105	69	i e
10	A.	(LINE FEED)	42	2A	•	74	4A	J	106	6A.	j
11	В	[VERTICAL TAB]	43	2B	+	75	48	K	107	6B	k
12	C	(FORM FEED)	44	20	1	76	4C	L	108	6C	I .
13	D	[CARRIAGE RETURN]	45	20		77	4D	M	109	6D	m
14	E	(SHIFT OUT)	46	2E		78	4E	N	110	6E	n
15	F	(SHIFT IN)	47	2F	I	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	5	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	(NEGATIVE ACKNOWLEDGE)	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	W
24	18	(CANCEL)	56	38	8	88	58	X	120	78	×
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	(SUBSTITUTE)	58	3A.	1	90	5A	Z	122	7A.	2
27	18	[ESCAPE]	59	38	į.	91	58	[123	78	€
28	1C	(FILE SEPARATOR)	60	3C	<	92	5C	1	124	7C	
29	1D	[GROUP SEPARATOR]	61	30	=	93	50	1	125	7D	}
30	1E	[RECORD SERVATOR]	62	3E	>	94	5E	-	126	7E	-
31	1F	[LIWIT SEPARATOR]	63	3F	7	95	5F	-	127	7F	[DEL]

CRITTOGRAFIA DES

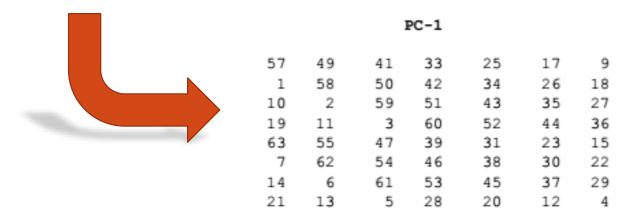
- DES works on 64-bits length blocks, therefore, we can summarize two cases
 - One block (length < 64 bits) The block shall be filled with 0s in order to reach the length of 64 bits
 - One block (legth > 64 bits) In this case we shall obtain more than one block to encrypt (Total block number = total_length[bits] / 64).
 Last obtained block length must be composed of 64 bits. Follow the same rule explained in the previous point.
- Convert String to hex number «Your»
 - Your = 59 6F 75 72
 - 59 6F 75 72 = [0101 1001] [0110 1111] [0111 0101] [0111 0010]
- Caratteri Speciali
 - Space = 20
 - CR = 0D
 - Line Feed = 0A

WORKING WITH DES

- Starting with M = 0123456789ABCDEF
 - First step is to achieve the binary form of M
- $\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$
- \bullet L = 0000 0001 0010 0011 0100 0101 0110 0111
- R = 1000 1001 1010 1011 1100 1101 1110 1111
- We have to read from Left ro Right

WORKING WITH DES - FIRST PERMUTATION

- K = 133457799BBCDFF1
- $K = 0001\ 0011\ 0011\ 0100\ 0101\ 0111\ 1011\ 1001\ 1001\ 1011\ 1100\ 1101\ 1111\ 1111\ 0001$



• K(Permutata) = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

WORKING WITH DES — 16 SUBKEYS

- K(Permutata) = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
 - C0 = 1111000 0110011 0010101 0101111 [28 bits]
 - D0 = 0101010 1011001 1001111 0001111 [28 bits]
- At this point we have to obtain 16 subkeys bloks following the follow table

Iteration	Number of
Number	Left Shifts
1.	1
2	1
3	2
4	2
5	2
6	2
フ	2
8	2
9	1
10	2
11	2
12	2
13	2
1.4	2
15	2
16	1

 For a generic iteration n of the keys (Cn, Dn) each bit has to be moved by x left position. Only the first bit shall take place in the last position of the word.

WORKING WITH DES

 $C_0 = 1111000011001100101010101111$ $D_0 = 01010101011100110011110001111$ $C_6 = 001100101010101111111111000011$ $D_6 = 10011001111100011110101010101$

 $\boldsymbol{C_I} = 1110000110011001010101011111$

 $D_I = 1010101011001100111100011110$

 $C_7 = 110010101010111111111100001100$ $D_7 = 01100111110001111010101010101$

 $C_2 = 11000011001100101010101111111$

 $D_2 = 0101010110011001111000111101$

 $C_8 = 00101010101111111110000110011$ $D_8 = 1001111000111101010101010101$

 $C_3 = 00001100110010101010111111111$

 $D_3 = 0101011001100111100011110101$

 $C_9 = 01010101011111111100001100110$ $D_9 = 00111100011111010101010110111$

 $C_4 = 001100110010101010111111111100$

 $D_d = 0101100110011110001111010101$

 $C_{I0} = 010101011111111110000110011001$

 $\boldsymbol{D_{I0}} = 1111000111101010101011001100$

 $C_5 = 110011001010101011111111110000$

 $D_5 = 011001100111110001111101010101$

 $C_{II} = 010101111111111000011001100101$

 $D_{II} = 1100011110101010101100110011$

WORKING WITH DES

```
C_{12} = 010111111111100001100110010101
```

 $D_{12} = 0001111010101010110011001111$

 $C_{13} = 011111111110000110011001010101$

 $D_{13} = 0111101010101011001100111100$

 $C_{I4} = 11111111000011001100101010101$

 $D_{14} = 111010101010111001100111110001$

 $C_{15} = 11111000011001100101010101111$

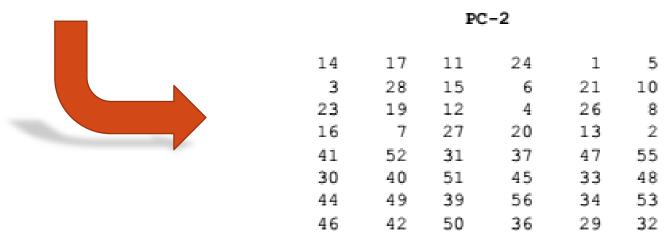
 $D_{15} = 101010101011100110011111000111$

 $C_{16} = 11110000110011001010101011111$

 $D_{16} = 0101010101100110011110001111$

WORKING WITH DES - KEYS PERMUTATION (PC-2)

- Now we have 16 subkeys, for a generic subkey n we have to apply the following permutation
- This permutation takes into account only 48 bits on 56 that are available. Therefore the result of this operation will be 16 bloks of 48 bits.
- We use n=1 for example
 - K1 = C1D1 =
 - 1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110



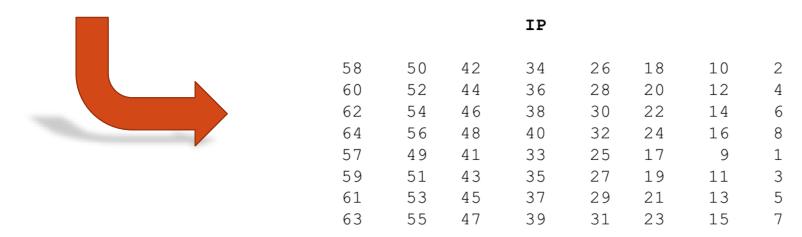
WORKING WITH DES

 $K_I = 000110 \ 110000 \ 001011 \ 1011111 \ 1111111 \ 000111 \ 000001 \ 110010$

```
K_2 = 011110 \ 011010 \ 111011 \ 011001 \ 110110 \ 111100 \ 100111 \ 100101
K_3 = 010101 \ 0111111 \ 110010 \ 001010 \ 010000 \ 101100 \ 111110 \ 011001
K_4 = 011100 \ 101010 \ 110111 \ 010110 \ 110110 \ 110011 \ 010100 \ 011101
K_5 = 0111111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000
K_6 = 011000 \ 111010 \ 010100 \ 111110 \ 010100 \ 000111 \ 101100 \ 101111
K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 111100
K_8 = 111101 \ 111000 \ 101000 \ 111010 \ 110000 \ 010011 \ 101111 \ 111011
K_9 = 111000\ 001101\ 1011111\ 101011\ 111011\ 0111110\ 011110\ 000001
K_{I0} = 101100\ 011111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111
K_{II} = 001000\ 010101\ 1111111\ 010011\ 110111\ 101101\ 001110\ 000110
K_{12} = 011101 \ 010111 \ 000111 \ 110101 \ 100101 \ 000110 \ 011111 \ 101001
K_{13} = 100101 \ 1111100 \ 0101111 \ 010001 \ 1111110 \ 101011 \ 101001 \ 000001
K_{Id} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010
K_{I5} = 101111 111001 000110 001101 001111 010011 111100 001010
K_{16} = 110010 \ 110011 \ 110110 \ 001011 \ 000011 \ 100001 \ 011111 \ 110101
```


WORKING WITH DES - MESSAGE PERMUTATION (IP)

• $\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$



 $IP = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111\ 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010$

• Follow IP table (fixing row index and moving on columns) we can compose the IP word. Starting from row 1, M's Bit in position 58 shall be the bit 0 of word IP, M's bit 50 shall be the bit 1 of word IP and so on

WORKING WITH DES - LO AND RO

 Once IP word is achieved we can obtain two substring composed of 32 bits

$$L_{\theta} = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111$$
 $R_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

• We have to procede along 16 iterations. Each Iterations has to follow the herein rules:

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} \oplus f(R_{n-1}, K_n)$$

WORKING WITH DES — FINDING ENCRYPTED WORD

Fixing n=1 we have to realize the following steps

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$ $L_1 = R_0 = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$

$$R_1 = L_0 \oplus f(R_0, K_1)$$

• To work with f(x) function we have to exapand R_{n-1} from 32 to 48 bits. This shall be made using the E-Table

E BIT-SELECTION TABLE

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

WORKING WITH DES - USING THE E-TABLE

Considering R0 and apply on it the E-Table permutaion

$$\mathbf{R}_{0} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$$

 $\mathbf{E}(\mathbf{R}_{0}) = 011110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101$

• In order to calculate the f(x) function we have to make the following operations:

$$E(R_{n-1}) \oplus K_n$$

WORKING WITH DES — S FUNCTION PERMUTATON

 As last permutation we have to apply the S(y) function on the result of

$$E(R_{n-1}) \oplus K_n = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8$$

• Each B is composed of 6-bits therefore taking as input this consideration we obtain B1 as the first 6 bits of the previous word:

$$B_1 = 011000$$

 Other terms will be obtained in the same way. Regarding S function we obtain:

$$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$$

WORKING WITH DES — S FUNCTION PERMUTAION

- In order to perform S-Permutation we have to specify some rules
- We will take under consideration the term B1 that we have already obtained:

1	2	3	4	5	6
0	1	1	0	0	0

S1

Column Number

Row																
No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

WORKING WITH DES — S FUNCTION PERMUTATON

1	2	3	4	5	6
0	1	1	0	0	0

- Bits into positio $\{1,6\}$ give us the row index to access in the table (i) in this case 00 = 0; i index can assume value in the range [0,3]
- Middle bits $\{2,3,4,5\}$ give us the column index (j), in this case 1100 = 12
- Accessing in table S1 we obtain the value in decimal form of S1(B1) = 5
 - In binary => 5 = 0101
 - The result is composed of 4 bits

S1

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S2

s3

10 0	9 14	6 3	15 5	1 13	12 7	11 4	2 8
13 7	0 9	3 4	6 10	2 8	5 14	12 11	15 1
13 6	4 9	8 15	3 0	11 1	2 12	5 10	14 7
1 10	13 0	6 9	8 7	4 15	14 3	11 5	2 12
			S4				
7 13	14 3	0 6	9 10	1 2	8 5	11 12	4 15
13 8	11 5	6 15	0 3	4 7	2 12	1 10	14 9
10 6	9 0	12 11	7 13	15 1	3 14	5 2	8 4
3 15	0 6	10 1	13 8	9 4	5 11	12 7	2 14
			S 5				
2 12	4 1	7 10	11 6	8 5	3 15	13 0	14 9
14 11	2 12	4 7	13 1	5 0	15 10	3 9	8 6

1 14 2 13 6 15 0 9

10 13 7 8 15 9 12 5 6 3 0 14

3

1 11

11

S6

12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

s7

S8

At the end for the first step (n = 1) we obtain :

 $K_1 + \mathbf{E}(R_0) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100\ 100111.$

 $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010$ 1011\ 0101\ 1001\ 0111

WORKING WITH DES — F FUNCTION COMPUTATION

 To achieve the result of S another permutation is needed using the P table

$$f = P(S_1(B_1)S_2(B_2)...S_8(B_8))$$

P

16	7	20	21	$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010$
29	12	28	17	1011 0101 1001 0111
1	15	23	26	1011 0101 1001 0111
5	18	31	10	we get
2	8	24	14	
32	27	3	9	f= 0010 0011 0100 1010 1010 1001 1011 1011
19	13	30	6	
22	11	4	25	

WORKING WITH DES

Coming back on Evaluation of

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} \oplus f(R_{n-1}, K_n)$$

• We have to repeat all those steps until we reach the 16 step. At this point we shall report all in a 64 hits form making the "Last".

LAST PERMUTATION

$$L_{16} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100$$

 $R_{16} = 0000\ 1010\ 0100\ 1100\ 1101\ 1001\ 1001\ 0101$

 We shall revert the Bits order by using the Last Permutation Table called IP-1

 $R_{16}L_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010$

LAST PERMUTATION TABLE (IP-1)

 $R_{16}L_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010$ $00110010\ 00110100$

IP-1									
40	8	48	16	56	24	64	32		
39	7	47	15	55	23	63	31		
38	6	46	14	54	22	62	30		
37	5	45	13	53	21	61	29		
36	4	44	12	52	20	60	28		
35	3	43	11	51	19	59	27		
34	2	42	10	50	18	58	26		
33	1	41	9	49	17	57	25		

 $IP^{-I} = 10000101\ 11101000\ 00010011\ 01010100\ 00001111\ 00001010\ 10110100$

which in hexadecimal format is

85E813540F0AB405.

This is the encrypted form of $\mathbf{M} = 0123456789 \text{ABCDEF}$: namely, $\mathbf{C} = 85E813540F0 \text{AB}405$.

CRYPTOGRAPHY RSA

- is one of the first practicable <u>public-key cryptosystems</u> and is widely used for secure data transmission.
- In such a <u>cryptosystem</u>, the <u>encryption key</u> (e) is public and differs from the <u>decryption key</u> (d) which is kept secret.
- RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first publicly described the algorithm in 1977.

RSA

- Step 1 Choosing of Two large prime numbers (p,q)
- Step 2 Compute n = p * q
 - N is called modulus for both public and private keys.
- Step 3 Compute the Euler's Totient function of n
 - $\varphi(n) = (p-1) * (q-1)$
- Step 4 Choose an integer «e» such that $1 < e < \varphi(n)$
 - «e» and $\varphi(n)$ are coprime.
 - «e» is released as public key exponent
- Step 5 gcd(e, $\varphi(n)$) = 1
- Step 6 d is the multiplicative inverse of e mod $\varphi(n)$ and it is the private key exponent keeped secret

RSA — EXTENDED EUCLIDEAN ALGORITHM

- Step 6 is commonly solved using the extended Euclidean Algorithm
- Considering the following assumption to better explain the algorithm
 - m = p
 - $\mathbf{n} = \varphi(n)$
- Algorithm starts as follow

$$q_0 = \left| \frac{n}{m} \right| \qquad r_0 = n - m * q_0$$

$$q_1 = \left\lfloor \frac{m}{r_0} \right\rfloor \qquad r_1 = m - r_0 * q_1$$

$$m = q_1 * (r_0) + r_1$$
 $p_1 = 1$

$$p_2 = p_0 - p_1 * q_0 mod n$$

RSA — EXTENDED EUCLIDEAN ALGORITHM

 Most generally, after, the iterations 0 and 1 we can generalize the iteration i-th as follow

•
$$q_i = \left[\frac{r_{i-2}}{r_{i-1}}\right]$$
 $r_i = r_{i-2} - r_{i-1} * q_i$

- $r_{i-2} = q_i * (r_{i-1}) + r_i$
- $p_i = p_{i-2} (p_{i-1} * q_{i-2}) \mod n$
- Algorithm ends when
 - $r_i = 0$
- At this point, it is possible to compute the d-key in the following way:
 - $d = p_{i+1} = p_{i-2} (p_{i-1} * q_{i-2}) \mod n$

RSA — EXAMPLE 1

- p = 13
 - q = 53
 - n = p * q = 13 * 53 = 689
 - $\varphi(n) = \varphi(689) = (p-1) * (q-1) = 12 * 52 = 624$
 - e t.c. 1<e<624
 - Let choose e as a prime number that is not a divisor of 624

RSA — EXAMPLE 1 ITERATIONS

Iterazione		
0	$q_0 = \left\lfloor \frac{f(n)}{e} \right\rfloor = \left\lfloor \frac{624}{5} \right\rfloor = 124$	$r_0 = f(n) - (e * q_0)$ = 624 - (5 * 124) = 4
		$p_0 = 0$
1	$q_1 = \left\lfloor \frac{e}{r_0} \right\rfloor = \left\lfloor \frac{5}{4} \right\rfloor = 1$	$r_1 = e - (r_0 * q_1) = 5 - (4 * 1)$ = 1
		$p_1 = 1$
2	$q_2 = \left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor = \left\lfloor \frac{4}{1} \right\rfloor = 4$	$r_2 = r_{i-2} - (r_{i-1} * q_i)$ = $4 - (1 * 4) = 0$
Ц		$p_2 = p_{i-2} - (p_{i-1} * q_{i-2}) \mod n$ = 0 - 124 mod 624 = 500
3		$p_3 = p_{i-2} - (p_{i-1} * q_{i-2}) \mod n = 1 + (-500 * 1 \mod 624) = d = 125$

RSA — EXAMPLE 1

- we encrypt 111 follow the equation herein shown:
 - $C = 111^5 mod 689 = 687$
 - $P = 687^{125} mod 689 = 111$

Just a simple reminder : e = 5, n = 689, d=125.

